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Department of Mathematics, School of Mathematical Sciences, Australian National University,
Canberra ACT 0200, Australia

Received 10 November 1995

Abstract. We obtain the diagonal reflection matrices for a recently introduced family of dilute
AL lattice models in which theA3 model can be viewed as an Ising model in a magnetic field.
We calculate the surface free energy from the crossing-unitarity relation and thus directly obtain
the critical magnetic surface exponentδs for L odd and surface specific heat exponent forL

even in each of the various regimes. ForL = 3 in the appropriate regime we obtain the Ising
exponentδs = − 15

7 , which is the first determination of this exponent without the use of scaling
relations.

There has been a recent growth of interest in the interaction-round-a-face (IRF) formulation
of lattice models in statistical mechanics in the presence of a boundary [1–6].IRF models
such as the restricted solid-on-solid (RSOS) AL models [7] and the diluteRSOSAL models
[8, 9] are particularly attractive as their solution in terms of elliptic functions correspond to
off-critical extensions in which the elliptic nomep measures the deviation from the critical
point p = 0. We refer to these models here as theAL models [7] and the diluteAL

models [8]. In theAL modelsp is temperature-like while for the diluteRSOSmodelsp is
temperature-like forL even but is magnetic-like forL odd. In particular, theA3 model,
in the appropriate regime, can be viewed as a critical Ising model in a thermal field. On
the other hand, the diluteA3 model, in the appropriate regime, can be viewed as a critical
Ising model in a magnetic field [8]. The singular part of the free energy of theA3 model
yields the bulk Ising specific heat exponentαb = 0 [7]. Consideration of the surface free
energy yields the known Ising surface specific heat exponent [10, 11]αs = 1 [5]. On the
other hand, the diluteA3 model provided a direct calculation of the bulk Ising magnetic
exponentδb = 15, first from the singular behaviour of the free energy [8] and later from a
calculation of the order parameters [12].

In this letter we consider the diluteAL models with open boundaries and derive the
surface free energy from which we obtain the magnetic Ising surface exponentδs = − 15

7 in
the appropriate regime of theA3 model. This is the first direct calculation of this quantity
without the use of scaling relations.

The diluteAL lattice models [8, 9] areRSOS models withL heights built on theAL

Dynkin diagram with a loop at each node. The non-zero face weights of the off-critical
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dilute AL models satisfy the star–triangle relation [13] and are given by [8]
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(1)

The crossing factorsS(a) are defined by

S(a) = (−1)a
ϑ1(4aλ)

ϑ4(2aλ)
(2)

andϑ1(u), ϑ4(u) are standard elliptic theta functions of the nomep

ϑ1(u) = ϑ1(u, p) = 2p1/4 sinu
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Four different critical branches are defined by [8]
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This yields eight separate regimes, according to the sign ofp. The magnetic Ising point
occurs in regime 2 withλ = 5

16π .
The integrable boundary weights are represented by a triangular form with three spins

[1–3]. For the dilute models, in accordance with the adjacency condition of the model, we
can define
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These are to satisfy the boundary version of the star–triangle equation (the reflection
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ensuring the commutativity of the transfer matrixT(u) defined by the elements
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Note that this formulation of the reflection equation and the transfer matrix differs from that
given in [1]. The above formulation does not incorporate crossing symmetry of the bulk
weights and is applicable toA(1)

n , n > 2 [15] for which a crossing symmetry does not exist.
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Another important relation is the boundary crossing relation, which here reads
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It can easily be seen that the reflection equation reduces to five non-trivial equations with
three distinct forms for diagonal boundary weights. These three distinct forms correspond
to the generic equations in the higher rankB(1)

n , A(2)
n cases, which have been solved in [15].

The diagonal solution we find is

K
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where

ga(u) = ϑ1(ξ + u)ϑ1(−λ + ξ + u)ϑ4(2aλ + ξ + u)ϑ4(−2aλ + ξ + u). (14)

Here the parameterξ takes the valuesξ = −λ/2 mod (̀ π/2 + mπτ/2) where` and m

are integers andga(u) has been fixed by crossing symmetry, otherwisega(u) may be taken
arbitrarily. The freedom inξ due to the double periodicity of the elliptic functions gives
four distinct solutions. All of these satisfy crossing symmetry up to an exponential factor.
As for the bulk weights, height reversal symmetry is broken by the boundary weights for
L odd, ensuring that the nomep can again be regarded as a magnetic field.

At criticality the knownK-matrix solutions for theA(2)

2 vertex model [18] are recovered
via the usual passage from face weights to vertex weights. The integrable boundary weights
of the dilute O(n) loop model [19] are also recovered in this limit after transforming to the
diagonal orientation [5].

The fusion procedure has been applied to the diluteAL models, resulting in the
construction of bothsu(2) [16] and su(3) [17] fused face weights from the face weights
given in (1). Thesu(2) fusion rule provides the functional relation [16]

T(u)T(u + 3λ) = f(u) + T(2)(u) (15)

whereT(2)(u) is the transfer matrix of the fused model with fusion level 2. For periodic
boundary conditions the matrix functionf(u) is given by

f(u) = [ρ(u)]N I (16)

whereI is the identity matrix and

ρ(u) = ϑ1(2λ − u)ϑ1(3λ − u)ϑ1(2λ + u)ϑ1(3λ + u)

ϑ2
1(2λ)ϑ2

1(3λ)
. (17)

The fusion procedure can be carried out in a similar manner for the open boundary
system, as has been done already for a number ofIRF models [1, 2, 5, 6]. It is necessary to
fuse the boundary face weights (12), (13). We find the matrix functionf(u) to be diagonal
with element(c, d) given by

f (u)c,d = ω−
c (u)ω+

d (u)ρ2N(u)/ρ(2u) (18)
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where the boundaries contribute the factorsω−
c (u) andω+

d (u), with
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Height c (d) is located on the right (left) boundary.
We now turn to the calculation of the magnetic surface exponentsδs from the surface

free energy. The finite-size corrections to the transfer matrixT(u) are contained inT(2)(u).
According to the spirit of [2, 4, 5, 6] the boundary crossing unitarity relation

T (u)T (u + 3λ) = f (u)c,d (21)

for the eigenvalues is sufficient to determine both the bulk and surface free energies.
The two contributions can be separated out by settingT (u) = Tb(u)Ts(u) and defining
Tb = κ2N

b andTs = κs. The free energies per site then follow asfb(u) = − logκb(u) and
fs(u) = − logκs(u). Thus for the bulk contribution we have

κb(u)κb(u + 3λ) = ρ(u) . (22)

This relation has already been used to determine the bulk free energy [8, 12] via the inversion
relation method [13, 20]. The critical behaviour asp → 0, obtained by use of the Poisson
summation formula [13], is [8, 12]

fb ∼
{

p1+1/δb L odd

p2−αb L even
(23)

where the values ofδb andαb are listed for the different regimes in table 1.

Table 1. Magnetic and thermal critical bulk and surface exponents of the diluteAL models.

Regime 1 2 3 4

δb
3L

L + 4

3(L + 2)

L − 2

L − 2

3(L + 2)

L + 4

3L
L odd

δs
−3L

L − 2

−3(L + 2)

L + 4

L + 4

L − 2

L + 4

L − 2
L odd

αb
2(L − 2)

3L

2(L + 4)

3(L + 2)

−2(L + 4)

L − 2

−2(L − 2)

L + 4
L even

αs
2(2L − 1)

3L

2(2L + 5)

3(L + 2)

−6

L − 2

6

L + 4
L even

To determine the surface exponentsδs andαs it is sufficient to consider only the relevant
contribution to the surface free energy, which does not involve the explicit form of the
boundary weights. By making use of the boundary crossing relation and after taking a
convenient normalization, the appropriate contribution is obtained by solving

κs(u)κs(u + 3λ) = ϑ1(5λ − 2u)ϑ1(6λ − 2u)ϑ1(5λ + 2u)ϑ1(6λ + 2u)

ϑ2
1(5λ)ϑ2

1(6λ)
. (24)

We solve this relation under the same analyticity assumptions as for the bulk calculation
[8, 12]. Specifically, we setp = e−ε , make the relevant conjugate modulus transformations,
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Laurent expand logκs(u) in powers of exp(−2πu/ε) and match coefficients in (24). In
regimes 1 and 2 we obtain

fs = −4
∞∑

k=1

cosh(πλk/ε) cosh[(11λ − π)πk/ε] sinh(2πuk/ε) sinh[2(3λ − u)πk/ε]

k sinh(π2k/ε) cosh(6πλk/ε)
.

(25)

For regimes 3 and 4 theLHS of relation (24) needs to be modified toκs(u)κs(u + 3λ − π)

for the appropriate analyticity strip, with the end result

fs = 4
∞∑

k=1

cosh(πλk/ε) cosh[(11λ − π)πk/ε] sinh(2πuk/ε) sinh[2(π−3λ + u)πk/ε]

k sinh(π2k/ε) cosh[2(π−3λ)k/ε]
.

(26)

Application of the Poisson summation formula yields

fs ∼
{

p1+1/δs L odd

p2−αs L even
(27)

as p → 0, where the values ofδs and αs are listed for the various regimes alongside the
bulk values in table 1. As in the bulk case, these exponents are magnetic forL odd and
thermal forL even.

For L = 3 in regime 2 we obtain the valueδs = − 15
7 . This result is in agreement with

the prediction for the two-dimensional Ising model in a magnetic field using the scaling
relations between bulk and surface exponents [21, 22, 23, 11]†. The negative value indicates
that the surface magnetization diverges towards infinity as the magnetic field goes to zero.
Thus a surface magnetization in zero field does not exist. Similar behaviour is known to
occur in the spherical model [11]. As expected, the Ising specific heat exponentsαb = 0
andαs = 1 are recovered in regimes 1 and 4 forL = 2.
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