IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

An Ising model in a magnetic field with a boundary

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 L61
(http://iopscience.iop.org/0305-4470/29/4/001)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:08

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern29 (1996) L61-L67. Printed in the UK

LETTER TO THE EDITOR

An Ising model in a magnetic field with a boundary

M T Batchelor, V Fridkin and Y-K Zhou

Department of Mathematics, School of Mathematical Sciences, Australian National University,
Canberra ACT 0200, Australia

Received 10 November 1995

Abstract. We obtain the diagonal reflection matrices for a recently introduced family of dilute
Ay lattice models in which thelz model can be viewed as an Ising model in a magnetic field.
We calculate the surface free energy from the crossing-unitarity relation and thus directly obtain
the critical magnetic surface exponehtfor L odd and surface specific heat exponent for
even in each of the various regimes. Hoe 3 in the appropriate regime we obtain the Ising
exponents = —175, which is the first determination of this exponent without the use of scaling
relations.

There has been a recent growth of interest in the interaction-round-atkadofmulation
of lattice models in statistical mechanics in the presence of a boundary [RF6inodels
such as the restricted solid-on-solRis0g A; models [7] and the dilute@sosA; models
[8, 9] are particularly attractive as their solution in terms of elliptic functions correspond to
off-critical extensions in which the elliptic nonye measures the deviation from the critical
point p = 0. We refer to these models here as thge models [7] and the diluted,
models [8]. In theA; modelsp is temperature-like while for the dilutesosmodelsp is
temperature-like for. even but is magnetic-like fof. odd. In particular, theAs model,
in the appropriate regime, can be viewed as a critical Ising model in a thermal field. On
the other hand, the dilutd; model, in the appropriate regime, can be viewed as a critical
Ising model in a magnetic field [8]. The singular part of the free energy ofathenodel
yields the bulk Ising specific heat exponent= 0 [7]. Consideration of the surface free
energy Yyields the known Ising surface specific heat exponent [1@&H 1 [5]. On the
other hand, the dilutes model provided a direct calculation of the bulk Ising magnetic
exponents, = 15, first from the singular behaviour of the free energy [8] and later from a
calculation of the order parameters [12].

In this letter we consider the diluta; models with open boundaries and derive the
surface free energy from which we obtain the magnetic Ising surface exp&ment—%s in
the appropriate regime of thés model. This is the first direct calculation of this quantity
without the use of scaling relations.

The dilute A lattice models [8, 9] ar&ksos models with L heights built on theA,
Dynkin diagram with a loop at each node. The non-zero face weights of the off-critical
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dilute A; models satisfy the star—triangle relation [13] and are given by [8]
W(a a u) _ V1(6A — u)P1 (31 + u)
a a D1(61)91(34)
S(a + 1) 94(2ar — 51)
B ( S(a) Da(2ar+ 1)
S(a — 1) ¥a(2ar + 51)\ D1 (u)91(3\ — u)
S(@)  Va2ar — 1) ) D1(61)91(34)

a) = w a a _ D1 (BA — u)0a(F2ak + X — u)
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S(a £ 1) 1(u)O1(Fdar — & + u)
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N 913001 (+4ar — 4))
S(aF 1) 01(41)  Va(d2ah — 51)\ d1(u)d1(F4ak — A +u)
S(a) 9120  Va(E2ar + 1) ) 013NV (Ldar —4r)
The crossing factor§ (a) are defined by
D1(4akr)
Va(2al)
and 91 (u), 94(u) are standard elliptic theta functions of the nome
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Four different critical branches are defined by [8]

T L

Branch 1 O<u < 3A A= — —— L=23...
4L +1
Branch2  O<u < 3\ = TLb+2 L=34,...
4L+1
nL+2 ©)
Branch 3 - 3L 0 = L =34,
T+ <u< AL+ 1
x L
Branch 4 —a7+3<u<0 A= — —— L=23,
4L+1

This yields eight separate regimes, according to the sigpn.ofThe magnetic Ising point
occurs in regime 2 with. = 7.

The integrable boundary weights are represented by a triangular form with three spins
[1-3]. For the dilute models, in accordance with the adjacency condition of the model, we

can define
C
K|a
O
These are to satisfy the boundary version of the star—triangle equation (the reflection
equation) [14, 2, 3]
u>W(Z f‘ u+v>K<d i v)

2l cfeo)ele
u+v>K(g ]ec u)W(Z ‘z

u) =0 unlessla — b| =0,1 and|a — c¢| =0, 1. (6)

18
a b
v |W
) (g f
ensuring the commutativity of the transfer matfig:) defined by the elements

N-1
Ck Ck+4l
u) [H W(bk bry1 u)

k=0

C
_%:K(b p

=

@)

@Twlb)= Y Ky (“0 o

XW< Ck I u>]K_<cN an u) (8)
Ck+1 Q41 by
wherea = {ag, a1, ...,ay} andb = {bg, b1, ..., by} and

c c
K_<a b u):K(ab u> ()
c ] S(a)? c
K+<b a u>— S(b)S(c)K<a b ISA—M). (20)

Note that this formulation of the reflection equation and the transfer matrix differs from that
given in [1]. The above formulation does not incorporate crossing symmetry of the bulk
weights and is applicable t&'", n > 2 [15] for which a crossing symmetry does not exist.
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Another important relation is the boundary crossing relation, which here reads
S(C C
Z s@ (a ) 2u+3)\>1(<c

171(214 + 5)\)191(21/! + 6)\) < d ‘ )
= K| a —uj .
H1(20)91(31) b

It can easily be seen that the reflection equation reduces to five non-trivial equations with
three distinct forms for diagonal boundary weights. These three distinct forms correspond
to the generic equations in the higher raB’, A® cases, which have been solved in [15].
The diagonal solution we find is

a _ Va(F2arh + & — u)
K<aila‘u>_ﬁ4(:|:2a)»+§+u)ga(u) (12)
a
K(a
a
where

8a(u) = V15 + u)01(—A + & + u)94(2ar + & + u)9a(—2ar + & +u). (14)

Here the parametey takes the value§ = —1/2 mod ¢x/2 + mnt/2) wherel andm

are integers ang, (u) has been fixed by crossing symmetry, othervgse:) may be taken
arbitrarily. The freedom it due to the double periodicity of the elliptic functions gives
four distinct solutions. All of these satisfy crossing symmetry up to an exponential factor.
As for the bulk weights, height reversal symmetry is broken by the boundary weights for
L odd, ensuring that the nome can again be regarded as a magnetic field.

At criticality the known K -matrix solutions for theA(zz) vertex model [18] are recovered
via the usual passage from face weights to vertex weights. The integrable boundary weights
of the dilute Og) loop model [19] are also recovered in this limit after transforming to the
diagonal orientation [5].

The fusion procedure has been applied to the dildte models, resulting in the
construction of bothsu(2) [16] andsu(3) [17] fused face weights from the face weights
given in (1). Thesu(2) fusion rule provides the functional relation [16]

T) T+ 31 =f(u) + T? ) (15)

u+3k>

(11)

> V(=2 +&—u)
u) =

= At Etw 8a (1) (13)

where T@ () is the transfer matrix of the fused model with fusion level 2. For periodic
boundary conditions the matrix functidiw) is given by

fa) = [pa)]"l (16)
wherel is the identity matrix and
M2r — u)01 (3 — u)¥1 (2 + u) 91 (31 + u)
B2(21)92(30)

The fusion procedure can be carried out in a similar manner for the open boundary
system, as has been done already for a numbexrofodels [1, 2,5, 6]. It is necessary to
fuse the boundary face weights (12), (13). We find the matrix fundtionto be diagonal
with element(c, d) given by

FW)ea = w7 Wy @)p® (u)/p(2u) (18)

p(u) = (17)
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where the boundaries contribute the factefx) and wj(u), with
S(b) c b c c
w, () = Z S(c (C C’2u+3k)K(bc u+3A)K<cc
S(d) d d d
z: b (b d‘3k—2u)K+(d d

d
3L K b
u—+ > + <d
Height ¢ (d) is located on the right (left) boundary.
We now turn to the calculation of the magnetic surface exponknt®m the surface
free energy. The finite-size corrections to the transfer mawi® are contained imT® (u).
According to the spirit of [2, 4,5, 6] the boundary crossing unitarity relation

Tw)T(u+3%) = f(u)ea (21)

for the eigenvalues is sufficient to determine both the bulk and surface free energies.
The two contributions can be separated out by setfitig) = T, (u)Ts(u) and defining

u) (29)

u> . (20)

Ty = KbN and Ts = k5. The free energies per site then follow ggu) = — logxp(u) and
fs(u) = —log«s(u). Thus for the bulk contribution we have
kp()kp(u + 31) = p(u) . (22)

This relation has already been used to determine the bulk free energy [8, 12] via the inversion
relation method [13, 20]. The critical behaviour as— 0, obtained by use of the Poisson
summation formula [13], is [8, 12]

pitl/e L odd
for~

(23)
p? L even

where the values ofy anday, are listed for the different regimes in table 1.

Table 1. Magnetic and thermal critical bulk and surface exponents of the ddytenodels.

Regime 1 2 3 4

N %‘ 3(LL j— 22) 3(LL —+ 22) L;LA' L odd

. % _3L(L+ J:t 2) % 2;:‘2‘ L odd
2AL-2 2 -2 2L -2

LR i

o 2(2§L— 1 23((2LL :r 25)) LiGZ T?FA, L even

To determine the surface exponefisindas it is sufficient to consider only the relevant
contribution to the surface free energy, which does not involve the explicit form of the
boundary weights. By making use of the boundary crossing relation and after taking a
convenient normalization, the appropriate contribution is obtained by solving
191(5)» 214)191(6)» 2u)191(5)» + 214)‘01(6)\. + 2M)

OZ(51)02(61)
We solve this relation under the same analyticity assumptions as for the bulk calculation
[8,12]. Specifically, we sep = e ¢, make the relevant conjugate modulus transformations,

ks()ks(u + 3)) = (24)
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Laurent expand logs(u) in powers of exp—2ru/e) and match coefficients in (24). In
regimes 1 and 2 we obtain

oz _4i coshmAk/€) coshf11h — m)mk/€] sinh(2ruk/e) SiNh[2(3A — u)k/€]
k=1

k sinh(m2k/e) cosh6m Ak /€)
(25)

For regimes 3 and 4 theds of relation (24) needs to be modified tg(u)xs(u + 31 — )
for the appropriate analyticity strip, with the end result

_4 2, coshmAk/e) coshf1llh — m)mwk/e] sinh(2ruk/e) sinh[2Aw —3A + u)mwk/e]
fo= ; k sinh(r2k/€) cosh[m —3A)k /€] '

(26)
Application of the Poisson summation formula yields
p1+1/63 L odd
Js~ ) (27)
p L even

as p — 0, where the values ofs and o5 are listed for the various regimes alongside the
bulk values in table 1. As in the bulk case, these exponents are magneficddd and
thermal forL even.

For L = 3 in regime 2 we obtain the valug = —1—75. This result is in agreement with
the prediction for the two-dimensional Ising model in a magnetic field using the scaling
relations between bulk and surface exponents [21, 22, 28, THe negative value indicates
that the surface magnetization diverges towards infinity as the magnetic field goes to zero.
Thus a surface magnetization in zero field does not exist. Similar behaviour is known to
occur in the spherical model [11]. As expected, the Ising specific heat expanestd
andas = 1 are recovered in regimes 1 and 4 for= 2.
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